EOS MLS software

Instrument Data Processing [http://mls.jpl.nasa.gov/]

Paul Wagner

[Paul.A.Wagner@Jpl.Nasa.Gov]

Jet Propulsion Laboratory

California Institute of Technology

September 20, 2001

Overview

- □ Background

 - ⇒ Instrument
 - ⇒ Science objective
- ☐ Software and its division into levels:
 - ⇒ Level 1 outputs radiances
 - ⇒ Level 2 outputs atmospheric molecular abundances
 - ⇒ Level 3 outputs daily and monthly maps and means
- ☐ Data flow between levels
 - ⇒ HDF4 and HDF-EOS1
 - ⇒ Products of Levels 2 and 3 to be archived
- ☐ Future plans—HDF5 and HDF-EOS5

Background

The mission What is EOS MLS? \Box Measure atmospheric temperature, water, ozone and significant molecules from $\sim 5-80 \text{km}$
☐ Joint project: JPL (US) and Edinburgh University (UK)
 □ Greatly enhanced follow-on to UARS MLS experiment □ Looks and scans limb forward instead of sideways
⇒ More sensitive instruments and more precise measurements
⇒ More radiometers and more atmospheric molecules
⇒ Greater spectral bandwidth and lower altitudes
☐ Currently scheduled for launch in July 2003 on AURA spacecraft The instrument What instruments is it made up of? ☐ Four GHz (118, 190, 240, 640) and one THz (2.5) radiometers
☐ 1.6m primary antenna for the GHz instruments
☐ 35 spectrometers of four different types, simultaneously observing

What are its objectives?

- Determine if stratospheric ozone is recovering
 - ⇒ Influence of human activities
 - ⇒ Arctic vulnerability
 - ⇒ Stratospheric chemistry producing or destroying ozone
- Improve understanding of climate variability
 - □ Global warming
 - ⇒ Verify, constrain, or eliminate key climate models
 - ⇒ Distinguish local events (fires, volcanos) from widespread trends
- □ Pollution in the upper troposphere

Level 1 data processing

- **Purpose** Convert unprocessed instrument data into calibrated radiances
 - ☐ Accepts Level 0 and AURA spacecraft auxiliary data
 - ⇒ Level 0 includes all instrument telemetry
 - ⇒ SDP Toolkit expects ephemeris and attitude data to be binary and therefore platform-specific—we would prefer HDF or HDF-EOS
 - ☐ Outputs (All HDF4 SD)
 - ⇒ Two radiance files to stay below 2GB limit imposed by HDF4
 - ⇒ One engineering file
 - ⇒ One orbit and attitude file
 - ⇒ May merge radiance files with move to HDF5

Level 2 data processing

Purpose Convert calibrated radiances into atmospheric abundances

- □ Accepts Level 1, AURA spacecraft auxiliary data, and operational meteorology data
- Outputs of two types
- □ 12GP
 - ⇒ HDF-EOS swath
 - ⇒ The standard product
 - ⇒ 1 molecule, 1 day in 1 file for most products
 - ⇒ Some may have multiple resolutions and/or include column amounts
- □ L2AUX
 - ⇒ HDF4 SD
 - ⇒ Format similar to Level 1 radiances
 - ⇒ Diagnostic

Level 2 data processing (continued)

Products More about our use of HDF-EOS swaths ☐ Geolocation coordinates: time, latitude, longitude, and pressure
 □ Adhere to AURA guidelines found at ⇒ Files created using HDF-EOS5 (Not yet); using Swath data type
⇒ Structure names chosen from valids list
⇒ Altitudes by way of a pressure grid
Data fields ordered so that pressures increment fastest
Data fields stored in specified units
⇒ HDF Fill and missing values both take value of Missing Value data field attribute
☐ (See talk by Cheryl Craig (NCAR) September 19 2:35 pm)
☐ Column amounts also stored as swaths; may use pressure coordinate to store tropopause pressure
 Quality, precision, and possibly other data stored in file with product

data

Level 3 data processing

- Purpose Map atmospheric abundances, calculate means
 - ☐ Accepts Level 2 products
- **Outputs** Produced by two separate PGEs
 - Daily program
 - ☐ Processes standard Level 2 products
 - Produces daily maps
 - Monthly program
 - ☐ Processes standard, diagnostic and noisy Level 2 products
 - Produces monthly maps
 - Produces daily and monthly zonal means

Level 3 data processing (continued)

Product Map data ☐ Daily and monthly ☐ HDF-EOS grid: both latitudes and longitudes □ longitudes range from −180 to 179deg every 4deg \Box latitudes range from $\pm 82 \deg$ every $2 \deg$ ☐ Diurnally-varying daily products split into three modes—ascending, descending, and combined; not all products **Product** Zonal mean data ☐ Daily and monthly ☐ Latitudes only, at Level 2 spacing ☐ Both daily and monthly split into three modes ☐ Use HDF-EOS Swath with no longitude data, unless new HDF-EOS Zonal Mean data type defined

Data flow

Future plans

HDF5 a	nd HDF-EOS5 Welcome or eagerly-awaited changes
	Finally some Linux support
	Awaiting IDL support
	ew features Further steps we might take We are open to good ideas
•	ges No guarantees-hard work ahead How to store diagnostics (point, grid, swath, SD?)
	How to make our data products easier to use?
	What standard names, units, axes can we adhere to or force others to adhere to?
	Zonal mean data don't fit neatly into any existing HDF-EOS structure

Data flow

Native Binary Bad stuff (mostly successful in not using it) Platform-dependent; HDF and HDF-EOS are platform-independent ☐ Currently forced to use with ephemeris and attitude data **HDF4** Good stuff (but we try to avoid it where we can) Forced to use it sometimes → □ Will be moving to HDF5 **HDF-EOS** Very good stuff (try to make it the only one our users need) ☐ Standard geolocations for placing data **Metadata** Necessary to enable users to order Level 1, 2, and 3 products Archived at DAAC ☐ Describe data product's species, date, goodness, etc. ☐ Combines static data (attribute names) with dynamic (their values) ☐ Assume our users will order our data by product/day

11